Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Desiccation cracking is a frequent natural phenomenon that occurs in drying soil and has a significant negative impact on the mechanical and hydraulic properties of clay or geomaterials in various engineering applications. In this study, recycled glass sand (RGS) was used to reduce the plasticity of clay soil and mitigate desiccation cracks in clay soils. The effect of the RGS particle size and content was investigated using a desiccation crack observation test. Digital image processing technology was used to evaluate the crack rate, length, width, and area during the observation test. The results reveal that the cracking rate was inversely proportional to the RGS content and directly proportional to the RGS particle size. For instance, the cracking rate of clay soil treated with 25% RGS with a particle size of 0.15 mm was reduced to 0.17% compared with untreated soil. The strengths of the untreated and RGS-treated soils were evaluated through unconfined compression tests. The unconfined compressive strength of the RGS-treated clay soil decreased slightly with the addition of RGS. In general, the addition of RGS has great potential for mitigating desiccation cracks in clay soils.more » « less
-
Tang, Qiang (Ed.)As an environmentally friendly technology, microbially induced calcite precipitation (MICP) is widely used to improve the engineering properties of soil. The goal of this study was to investigate the effect of rainfall-induced erosion on the stability of sandy slopes which were treated by MICP technology. The observation of the erosion pattern of low concentration (0.25 M Ca) and high concentration (0.5 M Ca) of MICP-treated slopes, the mechanical behaviors of MICP-treated and cement-treated samples, and the effects of rainfall-induced erosion on the roughness of 0.5 M Ca MICP-treated and 10% cement-treated slope were studied through visual observation, unconfined compressive tests, and roughness tests. For the 0.25 M Ca MICP-treated sample, surface erosion was found to occur soon after the start of the rainfall erosion test, while for the 0.5 M Ca MICP-treated sample, the slope surface remained intact after exposing to the rainfall for 24 hours. Through unconfined compressive tests, it can be concluded that the 0.5 M Ca MICP treatment achieved a high strength, which was similar to 10% cement-treated sand. The roughness test results showed that the surface of 0.5 M Ca MICP-treated slope looked smoother than the uneroded surface after 24-h rainfall-induced erosion. On the contrary, the surface of the 10% cement-treated slope became rougher after 24-h rainfall-induced erosion. These results indicated that the MICP-treated sandy slope had lower resistance against rainfall-induced erosion compared to the cement-treated sandy slope.more » « less
An official website of the United States government
